pandas聚合和分组运算之groupby
1、首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式):
| 1 2 3 4 5 6 7 8 9 10 11 12 |
>>> import
pandas as pd
>>> df =
pd.DataFrame({"key1":["a",
"a",
"b", "b",
"a"],
... "key2":["one",
"two",
"one", "two",
"one"],
... "data1":np.random.randn(5),
... "data2":np.random.randn(5)})
>>> df
data1 data2 key1 key2
0
-0.410673 0.519378
a one
1
-2.120793 0.199074
a two
2
0.642216 -0.143671
b one
3
0.975133 -0.592994
b two
4
-1.017495 -0.530459
a one
|
假设你想要按key1进行分组,并计算data1列的平均值,我们可以访问data1,并根据key1调用groupby:
| 1 2 3 |
>>> grouped
= df["data1"].groupby(df["key1"])
>>> grouped
<pandas.core.groupby.SeriesGroupBy
object at
0x04120D70>
|
变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df["key1"]的中间数据而已,然后我们可以调用GroupBy的mean方法来计算分组平均值:
| 1 2 3 4 5 |
>>> grouped.mean()
key1
a -1.182987
b 0.808674
dtype: float64
|
说明:数据(Series)根据分组键进行了聚合,产生了一个新的Series,其索引为key1列中的唯一值。之所以结果中索引的名称为key1,是因为原始DataFrame的列df["key1"]就叫这个名字。
2、如果我们一次传入多个数组,就会得到不同的结果:
| 1 2 3 4 5 6 7 8 |
>>> means
= df["data1"].groupby([df["key1"], df["key2"]]).mean()
>>> means
key1 key2
a one
-0.714084
two
-2.120793
b one
0.642216
two
0.975133
dtype: float64
|
通过两个键对数据进行了分组,得到的Series具有一个层次化索引(由唯一的键对组成):
| 1 2 3 4 5 |
>>> means.unstack()
key2 one two
key1
a -0.714084
-2.120793
b 0.642216
0.975133
|
在上面这些示例中,分组键均为Series。实际上,分组键可以是任何长度适当的数组:
| 1 2 3 4 5 6 7 8 |
>>> states
= np.array(["Ohio",
"California",
"California",
"Ohio",
"Ohio"])
>>> years
= np.array([2005,
2005,
2006, 2005,
2006])
>>> df["data1"].groupby([states, years]).mean()
California
2005 -2.120793
2006
0.642216
Ohio
2005 0.282230
2006
-1.017495
dtype: float64
|
3、此外,你还可以将列名(可以是字符串、数字或其他Python对象)用作分组将:
| 1 2 3 4 5 6 7 8 9 10 11 12 |
>>> df.groupby("key1").mean()
data1 data2
key1
a -1.182987
0.062665
b 0.808674
-0.368333
>>> df.groupby(["key1",
"key2"]).mean()
data1 data2
key1 key2
a one
-0.714084
-0.005540
two
-2.120793
0.199074
b one
0.642216 -0.143671
two
0.975133 -0.592994
|
说明:在执行df.groupby("key1").mean()时,结果中没有key2列。这是因为df["key2"]不是数值数据,所以被从结果中排除了。默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。
无论你准备拿groupby做什么,都有可能会用到GroupBy的size方法,它可以返回一个含有分组大小的Series:
| 1 2 3 4 5 6 7 |
>>> df.groupby(["key1",
"key2"]).size()
key1 key2
a one
2
two
1
b one
1
two
1
dtype: int64
|
注意:分组键中的任何缺失值都会被排除在结果之外。
4、对分组进行迭代
GroupBy对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。看看下面这个简单的数据集:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 |
>>> for
name, group in
df.groupby("key1"):
... print(name)
... print(group)
...
a
data1 data2 key1 key2
0
-0.410673 0.519378
a one
1
-2.120793 0.199074
a two
4
-1.017495 -0.530459
a one
b
data1 data2 key1 key2
2
0.642216 -0.143671
b one
3
0.975133 -0.592994
b two
|
对于多重键的情况,元组的第一个元素将会是由键值组成的元组:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
>>> for
(k1, k2), group in
df.groupby(["key1",
"key2"]):
... print
k1, k2
... print
group
...
a one
data1 data2 key1 key2
0
-0.410673 0.519378
a one
4
-1.017495 -0.530459
a one
a two
data1 data2 key1 key2
1
-2.120793 0.199074
a two
b one
data1 data2 key1 key2
2
0.642216 -0.143671
b one
b two
data1 data2 key1 key2
3
0.975133 -0.592994
b two
|
当然,你可以对这些数据片段做任何操作。有一个你可能会觉得有用的运算:将这些数据片段做成一个字典:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
>>> pieces
= dict(list(df.groupby("key1")))
>>> pieces["b"]
data1 data2 key1 key2
2
0.642216 -0.143671
b one
3
0.975133 -0.592994
b two
>>> df.groupby("key1")
<pandas.core.groupby.DataFrameGroupBy
object at
0x0413AE30>
>>> list(df.groupby("key1"))
[("a", data1 data2 key1 key2
0
-0.410673 0.519378
a one
1
-2.120793 0.199074
a two
4
-1.017495 -0.530459
a one), ("b", data1 data2 key1 key2
2
0.642216 -0.143671
b one
3
0.975133 -0.592994
b two)]
|
groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组。那上面例子中的df来说,我们可以根据dtype对列进行分组:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
>>> df.dtypes
data1 float64
data2 float64
key1
object
key2
object
dtype: object
>>> grouped
= df.groupby(df.dtypes, axis=1)
>>> dict(list(grouped))
{dtype("O"): key1 key2
0
a one
1
a two
2
b one
3
b two
4
a one, dtype("float64"): data1 data2
0
-0.410673 0.519378
1
-2.120793 0.199074
2
0.642216 -0.143671
3
0.975133 -0.592994
4
-1.017495 -0.530459}
|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
>>> grouped
<pandas.core.groupby.DataFrameGroupBy
object at
0x041288F0>
>>> list(grouped)
[(dtype("float64"), data1 data2
0
-0.410673 0.519378
1
-2.120793 0.199074
2
0.642216 -0.143671
3
0.975133 -0.592994
4
-1.017495 -0.530459), (dtype("O"), key1 key2
0
a one
1
a two
2
b one
3
b two
4
a one)]
|
5、选取一个或一组列
对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:
| 1 2 3 4 5 6 |
>>> df.groupby("key1")["data1"]
<pandas.core.groupby.SeriesGroupBy
object at
0x06615FD0>
>>> df.groupby("key1")["data2"]
<pandas.core.groupby.SeriesGroupBy
object at
0x06615CB0>
>>> df.groupby("key1")[["data2"]]
<pandas.core.groupby.DataFrameGroupBy
object at
0x06615F10>
|
和以下代码是等效的:
| 1 2 3 4 5 6 |
>>> df["data1"].groupby([df["key1"]])
<pandas.core.groupby.SeriesGroupBy
object at
0x06615FD0>
>>> df[["data2"]].groupby([df["key1"]])
<pandas.core.groupby.DataFrameGroupBy
object at
0x06615F10>
>>> df["data2"].groupby([df["key1"]])
<pandas.core.groupby.SeriesGroupBy
object at
0x06615E30>
|
尤其对于大数据集,很可能只需要对部分列进行聚合。例如,在前面那个数据集中,如果只需计算data2列的平均值并以DataFrame形式得到结果,代码如下:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
>>> df.groupby(["key1",
"key2"])[["data2"]].mean()
data2
key1 key2
a one
-0.005540
two
0.199074
b one
-0.143671
two
-0.592994
>>> df.groupby(["key1",
"key2"])["data2"].mean()
key1 key2
a one
-0.005540
two
0.199074
b one
-0.143671
two
-0.592994
Name: data2, dtype: float64
|
这种索引操作所返回的对象是一个已分组的DataFrame(如果传入的是列表或数组)或已分组的Series(如果传入的是标量形式的单个列明):
| 1 2 3 4 5 6 7 8 9 10 |
>>> s_grouped
= df.groupby(["key1",
"key2"])["data2"]
>>> s_grouped
<pandas.core.groupby.SeriesGroupBy
object at
0x06615B10>
>>> s_grouped.mean()
key1 key2
a one
-0.005540
two
0.199074
b one
-0.143671
two
-0.592994
Name: data2, dtype: float64
|
6、通过字典或Series进行分组
除数组以外,分组信息还可以其他形式存在,来看一个DataFrame示例:
| 1 2 3 4 5 6 7 8 9 10 11 12 |
>>> people
= pd.DataFrame(np.random.randn(5,
5),
... columns=["a",
"b",
"c", "d",
"e"],
... index=["Joe",
"Steve",
"Wes", "Jim",
"Travis"]
... )
>>> people
a b c d e
Joe 0.306336
-0.139431
0.210028 -1.489001
-0.172998
Steve 0.998335
0.494229 0.337624
-1.222726
-0.402655
Wes 1.415329
0.450839 -1.052199
0.731721 0.317225
Jim
0.550551 3.201369
0.669713 0.725751
0.577687
Travis
-2.013278
-2.010304 0.117713
-0.545000
-1.228323
>>> people.ix[2:3, ["b",
"c"]]
= np.nan
|
假设已知列的分组关系,并希望根据分组计算列的总计:
| 1 2 3 4 5 6 |
>>> mapping
= {"a":"red",
"b":"red",
"c":"blue",
... "d":"blue",
"e":"red",
"f":"orange"}
>>> mapping
{"a":
"red",
"c": "blue",
"b":
"red", "e":
"red",
"d": "blue",
"f":
"orange"}
>>> type(mapping)
<type
"dict">
|
现在,只需将这个字典传给groupby即可:
| 1 2 3 4 5 6 7 8 9 10 |
>>> by_column
= people.groupby(mapping, axis=1)
>>> by_column
<pandas.core.groupby.DataFrameGroupBy
object at
0x066150F0>
>>> by_column.sum()
blue red
Joe -1.278973
-0.006092
Steve -0.885102
1.089908
Wes 0.731721
1.732554
Jim 1.395465
4.329606
Travis -0.427287
-5.251905
|
Series也有同样的功能,它可以被看做一个固定大小的映射。对于上面那个例子,如果用Series作为分组键,则pandas会检查Series以确保其索引跟分组轴是对齐的:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
>>> map_series
= pd.Series(mapping)
>>> map_series
a red
b red
c blue
d blue
e red
f orange
dtype: object
>>> people.groupby(map_series, axis=1).count()
blue red
Joe
2 3
Steve
2 3
Wes
1 2
Jim
2 3
Travis
2 3
|
7、通过函数进行分组
相较于字典或Series,Python函数在定义分组映射关系时可以更有创意且更为抽象。任何被当做分组键的函数都会在各个索引值上被调用一次,其返回值就会被用作分组名称。
具体点说,以DataFrame为例,其索引值为人的名字。假设你希望根据人名的长度进行分组,虽然可以求取一个字符串长度数组,但其实仅仅传入len函数即可:
| 1 2 3 4 5 |
>> people.groupby(len).sum()
a b c d e
3
2.272216 3.061938
0.879741 -0.031529
0.721914
5
0.998335 0.494229
0.337624 -1.222726
-0.402655
6
-2.013278 -2.010304
0.117713 -0.545000
-1.228323
|
将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西最终都会被转换为数组:
| 1 2 3 4 5 6 7 |
>>> key_list
= ["one",
"one",
"one", "two",
"two"]
>>> people.groupby([len, key_list]).min()
a b c d e
3
one 0.306336
-0.139431 0.210028
-1.489001
-0.172998
two
0.550551 3.201369
0.669713 0.725751
0.577687
5
one 0.998335
0.494229 0.337624
-1.222726 -0.402655
6
two -2.013278
-2.010304
0.117713 -0.545000
-1.228323
|
8、根据索引级别分组
层次化索引数据集最方便的地方在于它能够根据索引级别进行聚合。要实现该目的,通过level关键字传入级别编号或名称即可:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
>>> columns
= pd.MultiIndex.from_arrays([["US",
"US",
"US", "JP",
"JP"],
... [1,
3, 5,
1, 3]], names=["cty",
"tenor"])
>>> columns
MultiIndex
[US 1,
3,
5, JP 1,
3]
>>> hier_df
= pd.DataFrame(np.random.randn(4,
5), columns=columns)
>>> hier_df
cty US JP
tenor
1 3
5 1
3
0
-0.166600 0.248159
-0.082408
-0.710841 -0.097131
1
-1.762270 0.687458
1.235950 -1.407513
1.304055
2
1.089944 0.258175
-0.749688 -0.851948
1.687768
3
-0.378311 -0.078268
0.247147 -0.018829
0.744540
>>> hier_df.groupby(level="cty", axis=1).count()
cty JP US
0
2 3
1
2 3
2
2 3
3
2 3
|
- 上一篇: python多维数组切片
- 下一篇: gensim的安装
