机器学习实战 第二章KNN(1)python代码及注释
#coding=utf8 #KNN.py from numpy import * import operator def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #我觉得可以这样理解,每一种方括号都是一个维度(秩),这里就是二维数组,最里面括着每一行的有一个方括号,后面又有一个,就是二维,四行 labels=["A","A","B","B"] return group,labels def classify0(inX,dataSet,labels,k): #inX是你要输入的要分类的“坐标”,dataSet是上面createDataSet的array,就是已经有的,分类过的坐标,label是相应分类的标签,k是KNN,k近邻里面的k dataSetSize=dataSet.shape[0] #dataSetSize是sataSet的行数,用上面的举例就是4行 diffMat=tile(inX,(dataSetSize,1))-dataSet #前面用tile,把一行inX变成4行一模一样的(tile有重复的功能,dataSetSize是重复4遍,后面的1保证重复完了是4行,而不是一行里有四个一样的),然后再减去dataSet,是为了求两点的距离,先要坐标相减,这个就是坐标相减 sqDiffMat=diffMat**2 #上一行得到了坐标相减,然后这里要(x1-x2)^2,要求乘方 sqDistances=sqDiffMat.sum(axis=1) #axis=1是列相加,,这样得到了(x1-x2)^2+(y1-y2)^2 distances=sqDistances**0.5 #开根号,这个之后才是距离 sortedDistIndicies=distances.argsort() #argsort是排序,将元素按照由小到大的顺序返回下标,比如([3,1,2]),它返回的就是([1,2,0]) classCount={} for i in range(k): voteIlabel=labels[sortedDistIndicies[i]] classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 #get是取字典里的元素,如果之前这个voteIlabel是有的,那么就返回字典里这个voteIlabel里的值,如果没有就返回0(后面写的),这行代码的意思就是算离目标点距离最近的k个点的类别,这个点是哪个类别哪个类别就加1 soredClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) #key=operator.itemgetter(1)的意思是按照字典里的第一个排序,{A:1,B:2},要按照第1个(AB是第0个),即‘1’‘2’排序。reverse=True是降序排序 return soredClassCount[0][0] #返回类别最多的类别
声明:该文观点仅代表作者本人,牛骨文系教育信息发布平台,牛骨文仅提供信息存储空间服务。
- 上一篇: React Native适配iphonex的方案
- 下一篇: 前端多语言切换