将读入的多维list转为一维list的方法(python)
第一种:使用extend()
>>> lines = open("test.txt").readlines()
>>> lines
["1
", "2
", "3
", "4,5
"]
>>> for line in lines:
... ll.extend(line.strip().split(","))
...
>>> ll
["1", "2", "3", "4", "5"]
第二种:使用+
>>> ll = []
>>> lines = open("test.txt").readlines()
>>> lines
["1
", "2
", "3
", "4,5
"]
>>> for line in lines:
... ll = ll + line.strip().split(",")
...
>>> ll
["1", "2", "3", "4", "5"]
第三种:使用flat array数组的自带方法
>>> ll = []
>>> lines = open("test.txt").readlines()
>>> for line in lines:
... ll.append(line.strip().split(","))
...
>>> ll = np.array(ll)
>>> np.hstack(ll.flat)
array(["1", "2", "3", "4", "5"],
dtype="|S1")
>>> list(np.hstack(ll.flat))
["1", "2", "3", "4", "5"]
总结:
1. extend()与append()的区别
append()可以接受任何数据类型和格式的数据作为一个元素插入原list
extend() 则仅能将任何数据类型和格式的数据展开作为一组元素插入原list
eg.
>>> a = [1,"a"]
>>> a.extend(np.array([2,"b"]))
>>> a
[1, "a", "2", "b"]
>>> a.extend([3,["c"]])
>>> a
[1, "a", "2", "b", 3, ["c"]]
>>> a = [1,"a"]
>>> a.extend(np.array([2,"b"]))
>>> a
[1, "a", "2", "b"]
>>> a.extend([3,["c"]])
>>> a
[1, "a", "2", "b", 3, ["c"]]
>>> a = [1,"a"]
>>> a.append(np.array([2,"b"]))
>>> a
[1, "a", array(["2", "b"],
dtype="|S21")]
>>> a.append([3,["c"]])
>>> a
[1, "a", array(["2", "b"],
dtype="|S21"), [3, ["c"]]]
2. flatten()无法对dtype = object的array进行展开,dtype = object说明array中的元素是list,即其不是满矩阵结构
eg.
>>> a = np.array([[1,2],[3,4]])
>>> a.dtype
dtype("int64")
>>> a.flatten()
array([1, 2, 3, 4])
>>>
>>> a = np.array([[1,2],[3,4],[5]])
>>> a.flatten()
array([[1, 2], [3, 4], [5]], dtype=object)
3.readlines读取文件默认str,可以通过map转换数据类型
eg.
>>> ll = []
>>> lines = open("test.txt").readlines()
>>> lines
["1
", "2
", "3
", "4,5
"]
>>> for line in lines:
... ll.append(map(int,line.strip().split(",")))
...
>>> ll
[[1], [2], [3], [4, 5]]