http://blog.chinaunix.net/link.php?url=http://blog.csdn.net%2Fdroidphone%2Farticle%2Fdetails%2F66325
1. ASoC的由来
ASoC--ALSA System on Chip ,是建立在标准ALSA驱动层上,为了更好地支持嵌入式处理器和移动设备中的音频Codec的一套软件体系。在ASoc出现之前,内核对于SoC中的音频已经有部分的支持,不过会有一些局限性:
- Codec驱动与SoC CPU的底层耦合过于紧密,这种不理想会导致代码的重复,例如,仅是wm8731的驱动,当时Linux中有分别针对4个平台的驱动代码。
- 音频事件没有标准的方法来通知用户,例如耳机、麦克风的插拔和检测,这些事件在移动设备中是非常普通的,而且通常都需要特定于机器的代码进行重新对音频路劲进行配置。
- 当进行播放或录音时,驱动会让整个codec处于上电状态,这对于PC没问题,但对于移动设备来说,这意味着浪费大量的电量。同时也不支持通过改变过取样频率和偏置电流来达到省电的目的。
/********************************************************************************************/ASoC正是为了解决上述种种问题而提出的,目前已经被整合至内核的代码树中:sound/soc。ASoC不能单独存在,他只是建立在标准ALSA驱动上的一个它必须和标准的ALSA驱动框架相结合才能工作。
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/********************************************************************************************/
2. 硬件架构
通常,就像软件领域里的抽象和重用一样,嵌入式设备的音频系统可以被划分为板载硬件(Machine)、Soc(Platform)、Codec三大部分,如下图所示:
图2.1 音频系统结构
- Machine 是指某一款机器,可以是某款设备,某款开发板,又或者是某款智能手机,由此可以看出Machine几乎是不可重用的,每个Machine上的硬件实现可能都不一样,CPU不一样,Codec不一样,音频的输入、输出设备也不一样,Machine为CPU、Codec、输入输出设备提供了一个载体。
- Platform 一般是指某一个SoC平台,比如pxaxxx,s3cxxxx,omapxxx等等,与音频相关的通常包含该SoC中的时钟、DMA、I2S、PCM等等,只要指定了SoC,那么我们可以认为它会有一个对应的Platform,它只与SoC相关,与Machine无关,这样我们就可以把Platform抽象出来,使得同一款SoC不用做任何的改动,就可以用在不同的Machine中。实际上,把Platform认为是某个SoC更好理解。
- Codec 字面上的意思就是编解码器,Codec里面包含了I2S接口、D/A、A/D、Mixer、PA(功放),通常包含多种输入(Mic、Line-in、I2S、PCM)和多个输出(耳机、喇叭、听筒,Line-out),Codec和Platform一样,是可重用的部件,同一个Codec可以被不同的Machine使用。嵌入式Codec通常通过I2C对内部的寄存器进行控制。
3. 软件架构
在软件层面,ASoC也把嵌入式设备的音频系统同样分为3大部分,Machine,Platform和Codec。
- Codec驱动 ASoC中的一个重要设计原则就是要求Codec驱动是平台无关的,它包含了一些音频的控件(Controls),音频接口,DAMP(动态音频电源管理)的定义和某些Codec IO功能。为了保证硬件无关性,任何特定于平台和机器的代码都要移到Platform和Machine驱动中。所有的Codec驱动都要提供以下特性:
- Codec DAI 和 PCM的配置信息;
- Codec的IO控制方式(I2C,SPI等);
- Mixer和其他的音频控件;
- Codec的ALSA音频操作接口;
必要时,也可以提供以下功能:
- DAPM描述信息;
- DAPM事件处理程序;
- DAC数字静音控制
- Platform驱动 它包含了该SoC平台的音频DMA和音频接口的配置和控制(I2S,PCM,AC97等等);它也不能包含任何与板子或机器相关的代码。
- Machine驱动 Machine驱动负责处理机器特有的一些控件和音频事件(例如,当播放音频时,需要先行打开一个放大器);单独的Platform和Codec驱动是不能工作的,它必须由Machine驱动把它们结合在一起才能完成整个设备的音频处理工作。
4. 数据结构
整个ASoC是由一些列数据结构组成,要搞清楚ASoC的工作机理,必须要理解这一系列数据结构之间的关系和作用,下面的关系图展示了ASoC中重要的数据结构之间的关联方式:
图4.1 Kernel-2.6.35-ASoC中各个结构的静态关系
ASoC把声卡实现为一个Platform Device,然后利用Platform_device结构中的dev字段:dev.drvdata,它实际上指向一个snd_soc_device结构。可以认为snd_soc_device是整个ASoC数据结构的根本,由他开始,引出一系列的数据结构用于表述音频的各种特性和功能。snd_soc_device结构引出了snd_soc_card和soc_codec_device两个结构,然后snd_soc_card又引出了snd_soc_platform、snd_soc_dai_link和snd_soc_codec结构。如上所述,ASoC被划分为Machine、Platform和Codec三大部分,如果从这些数据结构看来,snd_codec_device和snd_soc_card代表着Machine驱动,snd_soc_platform则代表着Platform驱动,snd_soc_codec和soc_codec_device则代表了Codec驱动,而snd_soc_dai_link则负责连接Platform和Codec。
5. 3.0版内核对ASoC的改进
本来写这篇文章的时候参考的内核版本是2.6.35,不过有CSDN的朋友提出在内核版本3.0版本中,ASoC做了较大的变化。故特意下载了3.0的代码,发现确实有所变化,下面先贴出数据结构的静态关系图:
图5.1 Kernel 3.0中的ASoC数据结构
由上图我们可以看出,3.0中的数据结构更为合理和清晰,取消了snd_soc_device结构,直接用snd_soc_card取代了它,并且强化了snd_soc_pcm_runtime的作用,同时还增加了另外两个数据结构snd_soc_codec_driver和snd_soc_platform_driver,用于明确代表Codec驱动和Platform驱动。
后续的章节中将会逐一介绍Machine和Platform以及Codec驱动的工作细节和关联。
前面一节的内容我们提到,ASoC被分为Machine、Platform和Codec三大部分,其中的Machine驱动负责Platform和Codec之间的耦合以及部分和设备或板子特定的代码,再次引用上一节的内容:Machine驱动负责处理机器特有的一些控件和音频事件(例如,当播放音频时,需要先行打开一个放大器);单独的Platform和Codec驱动是不能工作的,它必须由Machine驱动把它们结合在一起才能完成整个设备的音频处理工作。
ASoC的一切都从Machine驱动开始,包括声卡的注册,绑定Platform和Codec驱动等等,下面就让我们从Machine驱动开始讨论吧。
/********************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/********************************************************************************************/
1. 注册Platform Device
ASoC把声卡注册为Platform Device,我们以装配有WM8994的一款Samsung的开发板SMDK为例子做说明,WM8994是一颗Wolfson生产的多功能Codec芯片。
代码的位于:/sound/soc/samsung/smdk_wm8994.c,我们关注模块的初始化函数:
[cpp] view plaincopyprint?- static int __init smdk_audio_init(void)
- {
- int ret;
- smdk_snd_device = platform_device_alloc("soc-audio", -1);
- if (!smdk_snd_device)
- return -ENOMEM;
- platform_set_drvdata(smdk_snd_device, &smdk);
- ret = platform_device_add(smdk_snd_device);
- if (ret)
- platform_device_put(smdk_snd_device);
- return ret;
- }
由此可见,模块初始化时,注册了一个名为soc-audio的Platform设备,同时把smdk设到platform_device结构的dev.drvdata字段中,这里引出了第一个数据结构snd_soc_card的实例smdk,他的定义如下:
- static struct snd_soc_dai_link smdk_dai[] = {
- { /* Primary DAI i/f */
- .name = "WM8994 AIF1",
- .stream_name = "Pri_Dai",
- .cpu_dai_name = "samsung-i2s.0",
- .codec_dai_name = "wm8994-aif1",
- .platform_name = "samsung-audio",
- .codec_name = "wm8994-codec",
- .init = smdk_wm8994_init_paiftx,
- .ops = &smdk_ops,
- }, { /* Sec_Fifo Playback i/f */
- .name = "Sec_FIFO TX",
- .stream_name = "Sec_Dai",
- .cpu_dai_name = "samsung-i2s.4",
- .codec_dai_name = "wm8994-aif1",
- .platform_name = "samsung-audio",
- .codec_name = "wm8994-codec",
- .ops = &smdk_ops,
- },
- };
- static struct snd_soc_card smdk = {
- .name = "SMDK-I2S",
- .owner = THIS_MODULE,
- .dai_link = smdk_dai,
- .num_links = ARRAY_SIZE(smdk_dai),
- };
通过snd_soc_card结构,又引出了Machine驱动的另外两个个数据结构:
- snd_soc_dai_link(实例:smdk_dai[] )
- snd_soc_ops(实例:smdk_ops )
其中,snd_soc_dai_link中,指定了Platform、Codec、codec_dai、cpu_dai的名字,稍后Machine驱动将会利用这些名字去匹配已经在系统中注册的platform,codec,dai,这些注册的部件都是在另外相应的Platform驱动和Codec驱动的代码文件中定义的,这样看来,Machine驱动的设备初始化代码无非就是选择合适Platform和Codec以及dai,用他们填充以上几个数据结构,然后注册Platform设备即可。当然还要实现连接Platform和Codec的dai_link对应的ops实现,本例就是smdk_ops,它只实现了hw_params函数:smdk_hw_params。
2. 注册Platform Driver
按照Linux的设备模型,有platform_device,就一定会有platform_driver。ASoC的platform_driver在以下文件中定义:sound/soc/soc-core.c。
还是先从模块的入口看起:
[cpp] view plaincopyprint?- static int __init snd_soc_init(void)
- {
- ......
- return platform_driver_register(&soc_driver);
- }
soc_driver的定义如下:
[cpp] view plaincopyprint?- /* ASoC platform driver */
- static struct platform_driver soc_driver = {
- .driver = {
- .name = "soc-audio",
- .owner = THIS_MODULE,
- .pm = &soc_pm_ops,
- },
- .probe = soc_probe,
- .remove = soc_remove,
- };
我们看到platform_driver的name字段为soc-audio,正好与platform_device中的名字相同,按照Linux的设备模型,platform总线会匹配这两个名字相同的device和driver,同时会触发soc_probe的调用,它正是整个ASoC驱动初始化的入口。
3. 初始化入口soc_probe()
soc_probe函数本身很简单,它先从platform_device参数中取出snd_soc_card,然后调用snd_soc_register_card,通过snd_soc_register_card,为snd_soc_pcm_runtime数组申请内存,每一个dai_link对应snd_soc_pcm_runtime数组的一个单元,然后把snd_soc_card中的dai_link配置复制到相应的snd_soc_pcm_runtime中,最后,大部分的工作都在snd_soc_instantiate_card中实现,下面就看看snd_soc_instantiate_card做了些什么:
该函数首先利用card->instantiated来判断该卡是否已经实例化,如果已经实例化则直接返回,否则遍历每一对dai_link,进行codec、platform、dai的绑定工作,下只是代码的部分选节,详细的代码请直接参考完整的代码树。
[cpp] view plaincopyprint?- /* bind DAIs */
- for (i = 0; i < card->num_links; i++)
- soc_bind_dai_link(card, i);
ASoC定义了三个全局的链表头变量:codec_list、dai_list、platform_list,系统中所有的Codec、DAI、Platform都在注册时连接到这三个全局链表上。soc_bind_dai_link函数逐个扫描这三个链表,根据card->dai_link[]中的名称进行匹配,匹配后把相应的codec,dai和platform实例赋值到card->rtd[]中(snd_soc_pcm_runtime)。经过这个过程后,snd_soc_pcm_runtime:(card->rtd)中保存了本Machine中使用的Codec,DAI和Platform驱动的信息。
snd_soc_instantiate_card接着初始化Codec的寄存器缓存,然后调用标准的alsa函数创建声卡实例:
[cpp] view plaincopyprint?- /* card bind complete so register a sound card */
- ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
- card->owner, 0, &card->snd_card);
- card->snd_card->dev = card->dev;
- card->dapm.bias_level = SND_SOC_BIAS_OFF;
- card->dapm.dev = card->dev;
- card->dapm.card = card;
- list_add(&card->dapm.list, &card->dapm_list);
然后,依次调用各个子结构的probe函数:
- /* initialise the sound card only once */
- if (card->probe) {
- ret = card->probe(card);
- if (ret < 0)
- goto card_probe_error;
- }
- /* early DAI link probe */
- for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
- order++) {
- for (i = 0; i < card->num_links; i++) {
- ret = soc_probe_dai_link(card, i, order);
- if (ret < 0) {
- pr_err("asoc: failed to instantiate card %s: %d ",
- card->name, ret);
- goto probe_dai_err;
- }
- }
- }
- for (i = 0; i < card->num_aux_devs; i++) {
- ret = soc_probe_aux_dev(card, i);
- if (ret < 0) {
- pr_err("asoc: failed to add auxiliary devices %s: %d ",
- card->name, ret);
- goto probe_aux_dev_err;
- }
- }
在上面的soc_probe_dai_link()函数中做了比较多的事情,把他展开继续讨论:
[cpp] view plaincopyprint?
- static int soc_probe_dai_link(struct snd_soc_card *card, int num, int order)
- {
- ......
- /* set default power off timeout */
- rtd->pmdown_time = pmdown_time;
- /* probe the cpu_dai */
- if (!cpu_dai->probed &&
- cpu_dai->driver->probe_order == order) {
- if (cpu_dai->driver->probe) {
- ret = cpu_dai->driver->probe(cpu_dai);
- }
- cpu_dai->probed = 1;
- /* mark cpu_dai as probed and add to card dai list */
- list_add(&cpu_dai->card_list, &card->dai_dev_list);
- }
- /* probe the CODEC */
- if (!codec->probed &&
- codec->driver->probe_order == order) {
- ret = soc_probe_codec(card, codec);
- }
- /* probe the platform */
- if (!platform->probed &&
- platform->driver->probe_order == order) {
- ret = soc_probe_platform(card, platform);
- }
- /* probe the CODEC DAI */
- if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
- if (codec_dai->driver->probe) {
- ret = codec_dai->driver->probe(codec_dai);
- }
- /* mark codec_dai as probed and add to card dai list */
- codec_dai->probed = 1;
- list_add(&codec_dai->card_list, &card->dai_dev_list);
- }
- /* complete DAI probe during last probe */
- if (order != SND_SOC_COMP_ORDER_LAST)
- return 0;
- ret = soc_post_component_init(card, codec, num, 0);
- if (ret)
- return ret;
- ......
- /* create the pcm */
- ret = soc_new_pcm(rtd, num);
- ........
- return 0;
- }
该函数出了挨个调用了codec,dai和platform驱动的probe函数外,在最后还调用了soc_new_pcm()函数用于创建标准alsa驱动的pcm逻辑设备。现在把该函数的部分代码也贴出来:
- /* create a new pcm */
- int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
- {
- ......
- struct snd_pcm_ops *soc_pcm_ops = &rtd->ops;
- soc_pcm_ops->open = soc_pcm_open;
- soc_pcm_ops->close = soc_pcm_close;
- soc_pcm_ops->hw_params = soc_pcm_hw_params;
- soc_pcm_ops->hw_free = soc_pcm_hw_free;
- soc_pcm_ops->prepare = soc_pcm_prepare;
- soc_pcm_ops->trigger = soc_pcm_trigger;
- soc_pcm_ops->pointer = soc_pcm_pointer;
- ret = snd_pcm_new(rtd->card->snd_card, new_name,
- num, playback, capture, &pcm);
- /* DAPM dai link stream work */
- INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
- rtd->pcm = pcm;
- pcm->private_data = rtd;
- if (platform->driver->ops) {
- soc_pcm_ops->mmap = platform->driver->ops->mmap;
- soc_pcm_ops->pointer = platform->driver->ops->pointer;
- soc_pcm_ops->ioctl = platform->driver->ops->ioctl;
- soc_pcm_ops->copy = platform->driver->ops->copy;
- soc_pcm_ops->silence = platform->driver->ops->silence;
- soc_pcm_ops->ack = platform->driver->ops->ack;
- soc_pcm_ops->page = platform->driver->ops->page;
- }
- if (playback)
- snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, soc_pcm_ops);
- if (capture)
- snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, soc_pcm_ops);
- if (platform->driver->pcm_new) {
- ret = platform->driver->pcm_new(rtd);
- if (ret < 0) {
- pr_err("asoc: platform pcm constructor failed ");
- return ret;
- }
- }
- pcm->private_free = platform->driver->pcm_free;
- return ret;
- }
该函数首先初始化snd_soc_runtime中的snd_pcm_ops字段,也就是rtd->ops中的部分成员,例如open,close,hw_params等,紧接着调用标准alsa驱动中的创建pcm的函数snd_pcm_new()创建声卡的pcm实例,pcm的private_data字段设置为该runtime变量rtd,然后用platform驱动中的snd_pcm_ops替换部分pcm中的snd_pcm_ops字段,最后,调用platform驱动的pcm_new回调,该回调实现该platform下的dma内存申请和dma初始化等相关工作。到这里,声卡和他的pcm实例创建完成。
回到snd_soc_instantiate_card函数,完成snd_card和snd_pcm的创建后,接着对dapm和dai支持的格式做出一些初始化合设置工作后,调用了 card->late_probe(card)进行一些最后的初始化合设置工作,最后则是调用标准alsa驱动的声卡注册函数对声卡进行注册:
- if (card->late_probe) {
- ret = card->late_probe(card);
- if (ret < 0) {
- dev_err(card->dev, "%s late_probe() failed: %d ",
- card->name, ret);
- goto probe_aux_dev_err;
- }
- }
- snd_soc_dapm_new_widgets(&card->dapm);
- if (card->fully_routed)
- list_for_each_entry(codec, &card->codec_dev_list, card_list)
- snd_soc_dapm_auto_nc_codec_pins(codec);
- ret = snd_card_register(card->snd_card);
- if (ret < 0) {
- printk(KERN_ERR "asoc: failed to register soundcard for %s ", card->name);
- goto probe_aux_dev_err;
- }
至此,整个Machine驱动的初始化已经完成,通过各个子结构的probe调用,实际上,也完成了部分Platfrom驱动和Codec驱动的初始化工作,整个过程可以用一下的序列图表示:
图3.1 基于3.0内核 soc_probe序列图
下面的序列图是本文章第一个版本,基于内核2.6.35,大家也可以参考一下两个版本的差异:
1. Codec简介
在移动设备中,Codec的作用可以归结为4种,分别是:
- 对PCM等信号进行D/A转换,把数字的音频信号转换为模拟信号
- 对Mic、Linein或者其他输入源的模拟信号进行A/D转换,把模拟的声音信号转变CPU能够处理的数字信号
- 对音频通路进行控制,比如播放音乐,收听调频收音机,又或者接听电话时,音频信号在codec内的流通路线是不一样的
- 对音频信号做出相应的处理,例如音量控制,功率放大,EQ控制等等
ASoC对Codec的这些功能都定义好了一些列相应的接口,以方便地对Codec进行控制。ASoC对Codec驱动的一个基本要求是:驱动程序的代码必须要做到平台无关性,以方便同一个Codec的代码不经修改即可用在不同的平台上。以下的讨论基于wolfson的Codec芯片WM8994,kernel的版本3.3.x。
/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/
2. ASoC中对Codec的数据抽象
描述Codec的最主要的几个数据结构分别是:snd_soc_codec,snd_soc_codec_driver,snd_soc_dai,snd_soc_dai_driver,其中的snd_soc_dai和snd_soc_dai_driver在ASoC的Platform驱动中也会使用到,Platform和Codec的DAI通过snd_soc_dai_link结构,在Machine驱动中进行绑定连接。下面我们先看看这几个结构的定义,这里我只贴出我要关注的字段,详细的定义请参照:/include/sound/soc.h。 snd_soc_codec:[html] view plaincopyprint?
- /* SoC Audio Codec device */
- struct snd_soc_codec {
- const char *name; /* Codec的名字*/
- struct device *dev; /* 指向Codec设备的指针 */
- const struct snd_soc_codec_driver *driver; /* 指向该codec的驱动的指针 */
- struct snd_soc_card *card; /* 指向Machine驱动的card实例 */
- int num_dai; /* 该Codec数字接口的个数,目前越来越多的Codec带有多个I2S或者是PCM接口 */
- int (*volatile_register)(...); /* 用于判定某一寄存器是否是volatile */
- int (*readable_register)(...); /* 用于判定某一寄存器是否可读 */
- int (*writable_register)(...); /* 用于判定某一寄存器是否可写 */
- /* runtime */
- ......
- /* codec IO */
- void *control_data; /* 该指针指向的结构用于对codec的控制,通常和read,write字段联合使用 */
- enum snd_soc_control_type control_type;/* 可以是SND_SOC_SPI,SND_SOC_I2C,SND_SOC_REGMAP中的一种 */
- unsigned int (*read)(struct snd_soc_codec *, unsigned int); /* 读取Codec寄存器的函数 */
- int (*write)(struct snd_soc_codec *, unsigned int, unsigned int); /* 写入Codec寄存器的函数 */
- /* dapm */
- struct snd_soc_dapm_context dapm; /* 用于DAPM控件 */
- };
snd_soc_codec_driver: [html] view plaincopyprint?
- /* codec driver */
- struct snd_soc_codec_driver {
- /* driver ops */
- int (*probe)(struct snd_soc_codec *); /* codec驱动的probe函数,由snd_soc_instantiate_card回调 */
- int (*remove)(struct snd_soc_codec *);
- int (*suspend)(struct snd_soc_codec *); /* 电源管理 */
- int (*resume)(struct snd_soc_codec *); /* 电源管理 */
- /* Default control and setup, added after probe() is run */
- const struct snd_kcontrol_new *controls; /* 音频控件指针 */
- const struct snd_soc_dapm_widget *dapm_widgets; /* dapm部件指针 */
- const struct snd_soc_dapm_route *dapm_routes; /* dapm路由指针 */
- /* codec wide operations */
- int (*set_sysclk)(...); /* 时钟配置函数 */
- int (*set_pll)(...); /* 锁相环配置函数 */
- /* codec IO */
- unsigned int (*read)(...); /* 读取codec寄存器函数 */
- int (*write)(...); /* 写入codec寄存器函数 */
- int (*volatile_register)(...); /* 用于判定某一寄存器是否是volatile */
- int (*readable_register)(...); /* 用于判定某一寄存器是否可读 */
- int (*writable_register)(...); /* 用于判定某一寄存器是否可写 */
- /* codec bias level */
- int (*set_bias_level)(...); /* 偏置电压配置函数 */
- };
[html] view plaincopyprint?
- /*
- * Digital Audio Interface runtime data.
- *
- * Holds runtime data for a DAI.
- */
- struct snd_soc_dai {
- const char *name; /* dai的名字 */
- struct device *dev; /* 设备指针 */
- /* driver ops */
- struct snd_soc_dai_driver *driver; /* 指向dai驱动结构的指针 */
- /* DAI runtime info */
- unsigned int capture_active:1; /* stream is in use */
- unsigned int playback_active:1; /* stream is in use */
- /* DAI DMA data */
- void *playback_dma_data; /* 用于管理playback dma */
- void *capture_dma_data; /* 用于管理capture dma */
- /* parent platform/codec */
- union {
- struct snd_soc_platform *platform; /* 如果是cpu dai,指向所绑定的平台 */
- struct snd_soc_codec *codec; /* 如果是codec dai指向所绑定的codec */
- };
- struct snd_soc_card *card; /* 指向Machine驱动中的crad实例 */
- };
[html] view plaincopyprint?
- /*
- * Digital Audio Interface Driver.
- *
- * Describes the Digital Audio Interface in terms of its ALSA, DAI and AC97
- * operations and capabilities. Codec and platform drivers will register this
- * structure for every DAI they have.
- *
- * This structure covers the clocking, formating and ALSA operations for each
- * interface.
- */
- struct snd_soc_dai_driver {
- /* DAI description */
- const char *name; /* dai驱动名字 */
- /* DAI driver callbacks */
- int (*probe)(struct snd_soc_dai *dai); /* dai驱动的probe函数,由snd_soc_instantiate_card回调 */
- int (*remove)(struct snd_soc_dai *dai);
- int (*suspend)(struct snd_soc_dai *dai); /* 电源管理 */
- int (*resume)(struct snd_soc_dai *dai);
- /* ops */
- const struct snd_soc_dai_ops *ops; /* 指向本dai的snd_soc_dai_ops结构 */
- /* DAI capabilities */
- struct snd_soc_pcm_stream capture; /* 描述capture的能力 */
- struct snd_soc_pcm_stream playback; /* 描述playback的能力 */
- };
- struct snd_soc_dai_ops {
- /*
- * DAI clocking configuration, all optional.
- * Called by soc_card drivers, normally in their hw_params.
- */
- int (*set_sysclk)(...);
- int (*set_pll)(...);
- int (*set_clkdiv)(...);
- /*
- * DAI format configuration
- * Called by soc_card drivers, normally in their hw_params.
- */
- int (*set_fmt)(...);
- int (*set_tdm_slot)(...);
- int (*set_channel_map)(...);
- int (*set_tristate)(...);
- /*
- * DAI digital mute - optional.
- * Called by soc-core to minimise any pops.
- */
- int (*digital_mute)(...);
- /*
- * ALSA PCM audio operations - all optional.
- * Called by soc-core during audio PCM operations.
- */
- int (*startup)(...);
- void (*shutdown)(...);
- int (*hw_params)(...);
- int (*hw_free)(...);
- int (*prepare)(...);
- int (*trigger)(...);
- /*
- * For hardware based FIFO caused delay reporting.
- * Optional.
- */
- snd_pcm_sframes_t (*delay)(...);
- };
3. Codec的注册
因为Codec驱动的代码要做到平台无关性,要使得Machine驱动能够使用该Codec,Codec驱动的首要任务就是确定snd_soc_codec和snd_soc_dai的实例,并把它们注册到系统中,注册后的codec和dai才能为Machine驱动所用。以WM8994为例,对应的代码位置:/sound/soc/codecs/wm8994.c,模块的入口函数注册了一个platform driver: [html] view plaincopyprint?- static struct platform_driver wm8994_codec_driver = {
- .driver = {
- .name = "wm8994-codec",
- .owner = THIS_MODULE,
- },
- .probe = wm8994_probe,
- .remove = __devexit_p(wm8994_remove),
- };
- module_platform_driver(wm8994_codec_driver);
[html] view plaincopyprint?
- static int __devinit wm8994_probe(struct platform_device *pdev)
- {
- return snd_soc_register_codec(&pdev->dev, &soc_codec_dev_wm8994,
- wm8994_dai, ARRAY_SIZE(wm8994_dai));
- }
[html] view plaincopyprint?
- static struct snd_soc_codec_driver soc_codec_dev_wm8994 = {
- .probe = wm8994_codec_probe,
- .remove = wm8994_codec_remove,
- .suspend = wm8994_suspend,
- .resume = wm8994_resume,
- .set_bias_level = wm8994_set_bias_level,
- .reg_cache_size = WM8994_MAX_REGISTER,
- .volatile_register = wm8994_soc_volatile,
- };
- static struct snd_soc_dai_driver wm8994_dai[] = {
- {
- .name = "wm8994-aif1",
- .id = 1,
- .playback = {
- .stream_name = "AIF1 Playback",
- .channels_min = 1,
- .channels_max = 2,
- .rates = WM8994_RATES,
- .formats = WM8994_FORMATS,
- },
- .capture = {
- .stream_name = "AIF1 Capture",
- .channels_min = 1,
- .channels_max = 2,
- .rates = WM8994_RATES,
- .formats = WM8994_FORMATS,
- },
- .ops = &wm8994_aif1_dai_ops,
- },
- ......
- }
- codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
- /* create CODEC component name */
- codec->name = fmt_single_name(dev, &codec->id);
- codec->write = codec_drv->write;
- codec->read = codec_drv->read;
- codec->volatile_register = codec_drv->volatile_register;
- codec->readable_register = codec_drv->readable_register;
- codec->writable_register = codec_drv->writable_register;
- codec->dapm.bias_level = SND_SOC_BIAS_OFF;
- codec->dapm.dev = dev;
- codec->dapm.codec = codec;
- codec->dapm.seq_notifier = codec_drv->seq_notifier;
- codec->dapm.stream_event = codec_drv->stream_event;
- codec->devdev = dev;
- codec->driver = codec_drv;
- codec->num_dainum_dai = num_dai;
- /* register any DAIs */
- if (num_dai) {
- ret = snd_soc_register_dais(dev, dai_drv, num_dai);
- if (ret < 0)
- goto fail;
- }
- list_add(&codec->list, &codec_list);
- snd_soc_instantiate_cards();

图3.1 dai的注册 关于snd_soc_instantiate_cards函数,请参阅另一篇博文:Linux音频驱动之六:ASoC架构中的Machine。
4. mfd设备
前面已经提到,codec驱动把自己注册为一个platform driver,那对应的platform device在哪里定义?答案是在以下代码文件中:/drivers/mfd/wm8994-core.c。
WM8994本身具备多种功能,除了codec外,它还有作为LDO和GPIO使用,这几种功能共享一些IO和中断资源,linux为这种设备提供了一套标准的实现方法:mfd设备。其基本思想是为这些功能的公共部分实现一个父设备,以便共享某些系统资源和功能,然后每个子功能实现为它的子设备,这样既共享了资源和代码,又能实现合理的设备层次结构,主要利用到的API就是:mfd_add_devices(),mfd_remove_devices(),mfd_cell_enable(),mfd_cell_disable(),mfd_clone_cell()。
回到wm8994-core.c中,因为WM8994使用I2C进行内部寄存器的存取,它首先注册了一个I2C驱动:
[html] view plaincopyprint?- static struct i2c_driver wm8994_i2c_driver = {
- .driver = {
- .name = "wm8994",
- .owner = THIS_MODULE,
- .pm = &wm8994_pm_ops,
- .of_match_table = wm8994_of_match,
- },
- .probe = wm8994_i2c_probe,
- .remove = wm8994_i2c_remove,
- .id_table = wm8994_i2c_id,
- };
- static int __init wm8994_i2c_init(void)
- {
- int ret;
- ret = i2c_add_driver(&wm8994_i2c_driver);
- if (ret != 0)
- pr_err("Failed to register wm8994 I2C driver: %d ", ret);
- return ret;
- }
- module_init(wm8994_i2c_init);
- static int wm8994_i2c_probe(struct i2c_client *i2c,
- const struct i2c_device_id *id)
- {
- struct wm8994 *wm8994;
- int ret;
- wm8994 = devm_kzalloc(&i2c->dev, sizeof(struct wm8994), GFP_KERNEL);
- i2c_set_clientdata(i2c, wm8
- 上一篇: WM_NOTIFY
- 下一篇: 使用hibernate数据库连接不释放的问题