牛骨文教育服务平台(让学习变的简单)

Protocols

A protocol defines a blueprint of methods, properties, and other requirements that suit a particular task or piece of functionality. The protocol doesn’t actually provide an implementation for any of these requirements—it only describes what an implementation will look like. The protocol can then be adopted by a class, structure, or enumeration to provide an actual implementation of those requirements. Any type that satisfies the requirements of a protocol is said to conform to that protocol.

protocol SomeProtocol {
    // protocol definition goes here
}

struct SomeStructure: FirstProtocol, AnotherProtocol {
    // structure definition goes here
}

class SomeClass: SomeSuperclass, FirstProtocol, AnotherProtocol {
    // class definition goes here
}
protocol SomeProtocol {
    var mustBeSettable: Int { get set }
    var doesNotNeedToBeSettable: Int { get }
}

// Always prefix type property requirements with the class keyword when you define them in a protocol.
protocol AnotherProtocol {
    class var someTypeProperty: Int { get set }
}
protocol FullyNamed {
    var fullName: String { get }
}

struct Person: FullyNamed {
    var fullName: String
}
let john = Person(fullName: "John Appleseed")
// john.fullName is "John Appleseed”

class Starship: FullyNamed {
    var prefix: String?
    var name: String
    init(name: String, prefix: String? = nil) {
        self.name = name
        self.prefix = prefix
    }
    var fullName: String {
    return (prefix ? prefix! + " " : "") + name
    }
}
var ncc1701 = Starship(name: "Enterprise", prefix: "USS")
// ncc1701.fullName is "USS Enterprise"   

Protocols use the same syntax as normal methods, but are not allowed to specify default values for method parameters.

protocol SomeProtocol {
    class func someTypeMethod()
}

protocol RandomNumberGenerator {
    func random() -> Double
}

class LinearCongruentialGenerator: RandomNumberGenerator {
    var lastRandom = 42.0
    let m = 139968.0
    let a = 3877.0
    let c = 29573.0
    func random() -> Double {
        lastRandom = ((lastRandom * a + c) % m)
        return lastRandom / m
    }
}
let generator = LinearCongruentialGenerator()
println("Here"s a random number: (generator.random())")
// prints "Here"s a random number: 0.37464991998171"
println("And another one: (generator.random())")
// prints "And another one: 0.729023776863283"   

If you mark a protocol instance method requirement as mutating, you do not need to write the mutating keyword when writing an implementation of that method for a class. The mutating keyword is only used by structures and enumerations.

protocol Togglable {
    mutating func toggle()
}

enum OnOffSwitch: Togglable {
    case Off, On
    mutating func toggle() {
        switch self {
        case Off:
            self = On
        case On:
            self = Off
        }
    }
}
var lightSwitch = OnOffSwitch.Off
lightSwitch.toggle()
// lightSwitch is now equal to .On  
class Dice {
    let sides: Int
    let generator: RandomNumberGenerator
    init(sides: Int, generator: RandomNumberGenerator) {
        self.sides = sides
        self.generator = generator
    }
    func roll() -> Int {
        return Int(generator.random() * Double(sides)) + 1
    }
}

var d6 = Dice(sides: 6, generator: LinearCongruentialGenerator())
for _ in 1...5 {
    println("Random dice roll is (d6.roll())")
}
// Random dice roll is 3
// Random dice roll is 5
// Random dice roll is 4
// Random dice roll is 5
// Random dice roll is 4  
protocol DiceGame {
    var dice: Dice { get }
    func play()
}
protocol DiceGameDelegate {
    func gameDidStart(game: DiceGame)
    func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int)
    func gameDidEnd(game: DiceGame)
}

class SnakesAndLadders: DiceGame {
    let finalSquare = 25
    let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
    var square = 0
    var board: Int[]
    init() {
        board = Int[](count: finalSquare + 1, repeatedValue: 0)
        board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
        board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
    }
    var delegate: DiceGameDelegate?
    func play() {
        square = 0
        delegate?.gameDidStart(self)
        gameLoop: while square != finalSquare {
            let diceRoll = dice.roll()
            delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
            switch square + diceRoll {
            case finalSquare:
                break gameLoop
            case let newSquare where newSquare > finalSquare:
                continue gameLoop
            default:
                square += diceRoll
                square += board[square]
            }
        }
        delegate?.gameDidEnd(self)
    }
}

class DiceGameTracker: DiceGameDelegate {
    var numberOfTurns = 0
    func gameDidStart(game: DiceGame) {
        numberOfTurns = 0
        if game is SnakesAndLadders {
            println("Started a new game of Snakes and Ladders")
        }
        println("The game is using a (game.dice.sides)-sided dice")
    }
    func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
        ++numberOfTurns
        println("Rolled a (diceRoll)")
    }
    func gameDidEnd(game: DiceGame) {
        println("The game lasted for (numberOfTurns) turns")
    }
}

let tracker = DiceGameTracker()
let game = SnakesAndLadders()
game.delegate = tracker
game.play()
// Started a new game of Snakes and Ladders
// The game is using a 6-sided dice
// Rolled a 3
// Rolled a 5
// Rolled a 4
// Rolled a 5
// The game lasted for 4 turns    
protocol TextRepresentable {
    func asText() -> String
}

extension Dice: TextRepresentable {
    func asText() -> String {
        return "A (sides)-sided dice"
    }
}

let d12 = Dice(sides: 12, generator: LinearCongruentialGenerator())
println(d12.asText())
// prints "A 12-sided dice”

extension SnakesAndLadders: TextRepresentable {
    func asText() -> String {
        return "A game of Snakes and Ladders with (finalSquare) squares"
    }
}
println(game.asText())
// prints "A game of Snakes and Ladders with 25 squares"    

If a type already conforms to all of the requirements of a protocol, but has not yet stated that it adopts that protocol, you can make it adopt the protocol with an empty extension:

struct Hamster {
    var name: String
    func asText() -> String {
        return "A hamster named (name)"
    }
}
extension Hamster: TextRepresentable {} 

let simonTheHamster = Hamster(name: "Simon")
let somethingTextRepresentable: TextRepresentable = simonTheHamster
println(somethingTextRepresentable.asText())
// prints "A hamster named Simon" 
let things: TextRepresentable[] = [game, d12, simonTheHamster]

for thing in things {
    println(thing.asText())
}
// A game of Snakes and Ladders with 25 squares
// A 12-sided dice
// A hamster named Simon  
protocol InheritingProtocol: SomeProtocol, AnotherProtocol {
    // protocol definition goes here
}

protocol PrettyTextRepresentable: TextRepresentable {
    func asPrettyText() -> String
}

extension SnakesAndLadders: PrettyTextRepresentable {
    func asPrettyText() -> String {
        var output = asText() + ":
"
        for index in 1...finalSquare {
            switch board[index] {
            case let ladder where ladder > 0:
                output += "▲ "
            case let snake where snake < 0:
                output += "▼ "
            default:
                output += "○ "
            }
        }
        return output
    }
}

println(game.asPrettyText())
// A game of Snakes and Ladders with 25 squares:
// ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○    
// Protocol Composition

protocol Named {
    var name: String { get }
}
protocol Aged {
    var age: Int { get }
}
struct Person: Named, Aged {
    var name: String
    var age: Int
}
// any type that conforms to both the Named and Aged protocols 
func wishHappyBirthday(celebrator: protocol<Named, Aged>) { 
    println("Happy birthday (celebrator.name) - you"re (celebrator.age)!")
}
let birthdayPerson = Person(name: "Malcolm", age: 21)
wishHappyBirthday(birthdayPerson)
// prints "Happy birthday Malcolm - you"re 21!" 

You can check for protocol conformance only if your protocol is marked with the @objc attribute, as seen for the HasArea protocol above. This attribute indicates that the protocol should be exposed to Objective-C code and is described in Using Swift with Cocoa and Objective-C. Even if you are not interoperating with Objective-C, you need to mark your protocols with the @objc attribute if you want to be able to check for protocol conformance.

Note also that @objc protocols can be adopted only by classes, and not by structures or enumerations. If you mark your protocol as @objc in order to check for conformance, you will be able to apply that protocol only to class types.

@objc protocol HasArea {
    var area: Double { get }
}

class Circle: HasArea {
    let pi = 3.1415927
    var radius: Double
    var area: Double { return pi * radius * radius }
    init(radius: Double) { self.radius = radius }
}
class Country: HasArea {
    var area: Double
    init(area: Double) { self.area = area }
}
class Animal {
    var legs: Int
    init(legs: Int) { self.legs = legs }
}   

let objects: AnyObject[] = [
    Circle(radius: 2.0),
    Country(area: 243_610),
    Animal(legs: 4)
]

for object in objects {
    if let objectWithArea = object as? HasArea {
        println("Area is (objectWithArea.area)")
    } else {
        println("Something that doesn"t have an area")
    }
}
// Area is 12.5663708
// Area is 243610.0
// Something that doesn"t have an area  
// Optional Protocol Requirements 

@objc protocol CounterDataSource {
    @optional func incrementForCount(count: Int) -> Int
    @optional var fixedIncrement: Int { get }
}

@objc class Counter {
    var count = 0
    var dataSource: CounterDataSource?
    func increment() {
        if let amount = dataSource?.incrementForCount?(count) {
            count += amount
        } else if let amount = dataSource?.fixedIncrement? {
            count += amount
        }
    }
}

class ThreeSource: CounterDataSource {
    let fixedIncrement = 3
}

var counter = Counter()
counter.dataSource = ThreeSource()
for _ in 1...4 {
    counter.increment()
    println(counter.count)
}
// 3
// 6
// 9
// 12

class TowardsZeroSource: CounterDataSource {
    func incrementForCount(count: Int) -> Int {
        if count == 0 {
            return 0
        } else if count < 0 {
            return 1
        } else {
            return -1
        }
    }
}

counter.count = -4
counter.dataSource = TowardsZeroSource()
for _ in 1...5 {
    counter.increment()
    println(counter.count)
}
// -3
// -2
// -1
// 0
// 0